Научно-популярно о космосе и астрономии (lozga) wrote,
Научно-популярно о космосе и астрономии
lozga

Categories:

РИТЭГ: прозаичные тепло и электричество для космических аппаратов

01
Так получилось, что в серии "Мирный космический атом" мы движемся от фантастического к распространенному. В прошлый раз мы поговорили об энергетических реакторах, очевидный следующий шаг - рассказать о радиоизотопных термоэлектрических генераторах. Недавно на Хабре был отличный пост про РИТЭГ зонда "Кассини", а мы рассмотрим эту тему с более широкой точки зрения.

Физика процесса


Производство тепла

В отличие от ядерного реактора, который использует явление цепной ядерной реакции, радиоизотопные генераторы используют естественный распад радиоактивных изотопов. Вспомним, что атомы состоят из протонов, электронов и нейтронов. В зависимости от количества нейтронов в ядре конкретного атома, он может быть стабильным, или же проявлять тенденцию к самопроизвольному распаду. Например, атом кобальта 59Co с 27 протонами и 32 нейтронами в ядре стабилен. Такой кобальт использовался человечеством со времен Древнего Египта. Но если мы добавим к 59Co один нейтрон (например, поместив "обычный" кобальт в атомный реактор), то получится 60Co, радиоактивный изотоп с периодом полураспада 5,2 года. Термин "период полураспада" означает, что через 5,2 года один атом распадется с вероятностью 50%, а от ста атомов останется примерно половина. У всех "обычных" элементов есть свои изотопы с разным периодом полураспада:

02
3D карта изотопов, спасибо crustgroup за картинку.

Подбирая подходящий изотоп, можно получить РИТЭГ с требуемым сроком службы и другими параметрами:
Изотоп Способ получения Удельная мощность, Вт/г Объёмная мощность, Вт/см³ Период полураспада Интегрированная энергия распада изотопа, кВт·ч/г Рабочая форма изотопа
60Со (кобальт-60) Облучение в реакторе 2,9 ~26 5,271 года 193,2 Металл, сплав
238Pu (плутоний-238) атомный реактор 0,568 6,9 86 лет 608,7 Карбид плутония
90Sr (стронций-90) осколки деления 0,93 0,7 28 лет 162,721 SrO, SrTiO3
144Ce (церий-144) осколки деления 2,6 12,5 285 дней 57,439 CeO2
242Cm (кюрий-242) атомный реактор 121 1169 162 дня 677,8 Cm2O3
147Pm (прометий-147) осколки деления 0,37 1,1 2,64 года 12,34 Pm2O3
137Cs (цезий-137) осколки деления 0,27 1,27 33 года 230,24 CsCl
210Po (полоний-210) облучение висмута 142 1320 138 дней 677,59 сплавы со свинцом, иттрием, золотом
244Cm (кюрий-244) атомный реактор 2,8 33,25 18,1 года 640,6 Cm2O3
232U (уран-232) облучение тория 8,097 ~88,67 68,9 лет 4887,103 диоксид, карбид, нитрид урана
106Ru (рутений-106) осколки деления 29,8 369,818 ~371,63 сут 9,854 металл, сплав

То, что распад изотопов происходит самостоятельно, означает, что РИТЭГом нельзя управлять. После загрузки топлива он будет нагреваться и производить электричество годами, постепенно деградируя. Уменьшение количества делящегося изотопа означает, что будет меньше ядерных распадов, меньше тепла и электричества. Плюс, падение электрической мощности усугубит деградация электрического генератора.
Существует упрощённая версия РИТЭГа, в котором распад изотопа используется только для обогрева, без получения электричества. Такой модуль называется блоком обогрева или RHG (Radioisotope Heat Generator).

Превращение тепла в электричество

Как и в случае атомного реактора, на выходе у нас получается тепло, которое надо каким-либо образом преобразовать в электричество. Для этого можно использовать:

  • Термоэлектрический преобразователь. Соединив два проводника из разных материалов (например, хромеля и алюмеля) и нагрев один из них, можно получить источник электричества.

  • Термоэмиссионный преобразователь. В этом случае используется электронная лампа. Её катод нагревается, и электроны получают достаточно энергии чтобы "допрыгнуть" до анода, создавая электрический ток.

  • Термофотоэлектрический преобразователь. В этом случае к источнику тепла подсоединяется фотоэлемент, работающий в инфракрасном диапазоне. Источник тепла испускает фотоны, которые улавливаются фотоэлементом и преобразуются в электричество.

  • Термоэлектрический конвертер на щелочных металлах. Здесь для превращения тепла в электричество используется электролит из расплавленных солей натрия и серы.

  • Двигатель Стирлинга - тепловая машина для преобразования разности температуры в механическую работу. Электричество получается из механической работы с использованием какого-либо генератора.



История


Первый экспериментальный радиоизотопный источник энергии был представлен в 1913 году. Но только со второй половины XX века, с распространением ядерных реакторов, на которых можно было получать изотопы в промышленных масштабах, РИТЭГи стали активно использоваться.

США

В США РИТЭГами занималась уже знакомая вам по прошлому посту организация SNAP.
SNAP-1.
Это был экспериментальный РИТЭГ на 144Ce и с генератором на цикле Ренкина (паровая машина) со ртутью в качестве теплоносителя. Генератор успешно проработал 2500 часов на Земле, но в космос не полетел.

SNAP-3.
Первый РИТЭГ, летавший в космос на навигационных спутниках Transit 4A и 4B. Энергетическая мощность 2 Вт, вес 2 кг, использовал плутоний-238.
03

Sentry
РИТЭГ для метеорологического спутника. Энергетическая мощность 4,5 Вт, изотоп - стронций-90.

SNAP-7.
Семейство наземных РИТЭГов для маяков, световых буев, погодных станций, акустических буев и тому подобного. Очень большие модели, вес от 850 до 2720 кг. Энергетическая мощность - десятки ватт. Например, SNAP-7D - 30 Вт при массе 2 т.

SNAP-9
Серийный РИТЭГ для навигационных спутников Transit. Масса 12 кг, электрическая мощность 25 Вт.

SNAP-11
Экспериментальный РИТЭГ для лунных посадочных станций Surveyor. Предлагалось использовать изотоп кюрий-242. Электрическая мощность - 25 Вт. Не использовались.

SNAP-19
Серийный РИТЭГ, использовался во множестве миссий - метеорологические спутники Nimbus, зонды "Пионер" -10 и -11, марсианские посадочные станции "Викинг". Изотоп - плутоний-238, энергетическая мощность ~40 Вт.
04

SNAP-21 и -23
РИТЭГи для подводного применения на стронции-90.

SNAP-27
РИТЭГи для питания научного оборудования программы "Аполлон". 3,8 кг. плутония-238 давали энергетическую мощность 70 Вт. Лунное научное оборудование было выключено ещё в 1977 году (люди и аппаратура на Земле требовали денег, а их не хватало). РИТЭГи на 1977 год выдавали от 36 до 60 Вт электрической мощности.
05

MHW-RTG
Название расшифровывается как "многосотваттный РИТЭГ". 4,5 кг. плутония-238 давали 2400 Вт тепловой мощности и 160 Вт электрической. Эти РИТЭГи стояли на Экспериментальных Спутниках Линкольна (LES-8,9) и уже 37 лет обеспечивают теплом и электричеством "Вояджеры". На 2014 год РИТЭГи обеспечивают около 53% своей начальной мощности.
06

GPHS-RTG
Самый мощный из космических РИТЭГов. 7,8 кг плутония-238 давали 4400 Вт тепловой мощности и 300 Вт электрической. Использовался на солнечном зонде "Улисс", зондах "Галилео", "Кассини-Гюйгенс" и летит к Плутону на "Новых горизонтах".
07

MMRTG
РИТЭГ для "Кьюриосити". 4 кг плутония-238, 2000 Вт тепловой мощности, 100 Вт электической.
08
Тёплый ламповый кубик плутония.

10
РИТЭГи США с привязкой по времени.

Сводная таблица:
Название Носители (количество на аппарате) Максимальная мощность Изотоп Вес топлива, кг Полная масса, кг
Электрическая, Вт Тепловая, Вт
MMRTG MSL/Curiosity rover ~110 ~2000 238Pu ~4 <45
GPHS-RTG Cassini (3), New Horizons (1), Galileo (2), Ulysses (1) 300 4400 238Pu 7.8 55.9–57.8
MHW-RTG LES-8/9, Voyager 1 (3), Voyager 2 (3) 160 2400 238Pu ~4.5 37.7
SNAP-3B Transit-4A (1) 2.7 52.5 238Pu  ? 2.1
SNAP-9A Transit 5BN1/2 (1) 25 525 238Pu ~1 12.3
SNAP-19 Nimbus-3 (2), Pioneer 10 (4), Pioneer 11 (4) 40.3 525 238Pu ~1 13.6
модификация SNAP-19 Viking 1 (2), Viking 2 (2) 42.7 525 238Pu ~1 15.2
SNAP-27 Apollo 12–17 ALSEP (1) 73 1,480 238Pu 3.8 20


СССР/Россия

В СССР и России космических РИТЭГов было мало. Первым экспериментальным генератором стал РИТЭГ "Лимон-1" на полонии-210, созданный в 1962 году:
11

Первыми космическими РИТЭГами стали "Орион-1" электрической мощностью 20 Вт на полонии-210 и запущенные на связных спутниках серии "Стрела-1" - "Космос-84" и "Космос-90". Блоки обогрева стояли на "Луноходах" -1 и -2, и РИТЭГ стоял на миссии "Марс-96":
12

В то же время РИТЭГи очень активно использовались в маяках, навигационных буях и прочем наземном оборудовании - серии "БЭТА", "РИТЭГ-ИЭУ" и многие другие.
13

Конструкция


Практически все РИТЭГи используют термоэлектрические преобразователи и поэтому имеют одинаковую конструкцию:
14

Перспективы


Все летавшие РИТЭГи отличает очень низкий КПД - как правило, электрическая мощность меньше 10% от тепловой. Поэтому в начале XXI века в NASA был запущен проект ASRG - РИТЭГ с двигателем Стирлинга. Ожидалось повышение КПД до 30% и 140 Вт электрической мощности при 500 Вт тепловой. К сожалению, проект был остановлен в 2013 году из-за превышения бюджета. Но, теоретически, применение более эффективных преобразователей тепла в электричество способно серьезно поднять КПД РИТЭГов.

Достоинства и недостатки


Достоинства:

  1. Очень простая конструкция.

  2. Может работать годами и десятилетиями, деградируя постепенно.

  3. Может использоваться одновременно для обогрева и электропитания.

  4. Не требует управления и присмотра.


Недостатки:

  1. Требуются редкие и дорогие изотопы в качестве топлива.

  2. Производство топлива сложное, дорогое и медленное.

  3. Низкий КПД.

  4. Мощность ограничивается сотнями ватт. РИТЭГ киловаттной электрической мощности уже слабо оправдан, мегаваттной - практически не имеет смысла: будет слишком дорогим и тяжелым.



Сочетание таких достоинств и недостатков означает, что РИТЭГи и блоки обогрева занимают свою нишу в космической энергетике и сохранят её и далее. Они позволяют просто и эффективно обогревать и питать электричеством межпланетные аппараты, но от них не стоит ждать какого-либо энергетического прорыва.

Источники


Кроме Википедии использовались:
Tags: мирный космический атом
Subscribe

promo lozga november 4, 2014 17:00
Buy for 50 tokens
Привет! Добро пожаловать в блог, посвященный популяризации космонавтики, астрономии, и, шире, науки и прогресса человечества. Если вы зашли ко мне впервые, рекомендую почитать длинные серии постов по тегам: Серия "Незаметные сложности космической техники". Рассказы о том, как и почему ракеты и…
  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your IP address will be recorded 

  • 3 comments