Научно-популярно о космосе и астрономии (lozga) wrote,
Научно-популярно о космосе и астрономии
lozga

Category:

Ошибки фантастов или размышления о том, почему остановилась космонавтика

01
Весь двадцатый век фантасты много и талантливо писали об освоении космоса. Герои "Хиуса" подарили человечеству богатства Урановой Голконды, пилот Пиркс работал капитаном космических сухогрузов, по Солнечной системе ходили лидер-контейнероносцы и балкер-трампы, и я уж не говорю про всякую мистику путешествий к таинственным монолитам. Однако 21 век не оправдал надежд. Человечество робко стоит в прихожей Космоса, не выбравшись на постоянной основе дальше земной орбиты. Почему так получилось и на что надеяться тем, кто хотел бы читать в новостях про повышение урожайности марсианских яблонь?

Скрипач не нужен


Первый парадокс, с которым мы столкнулись - человек не самый подходящий субъект для исследования космоса. Писатели-фантасты, которые придумывали космические экспедиции, могли опираться только на исторический опыт первопроходцев Земли - мореплавателей, полярников, первых авиаторов. Действительно, чем, вроде бы, покорение Марса будет отличаться от покорения Южного полюса? И там и там непригодная для жизни без предварительной подготовки среда, нужно везти с собой припасы, и за пределы корабля или дома нельзя выйти без надевания специального снаряжения. Но фантасты и футурологи не смогли предсказать развитие электроники и робототехники, и роботы-исследователи обычно описывались в анекдотическом ключе:
Мне пришлось на полчаса оторваться от письма и выслушать сетования моего соседа, кибернетиста Щербакова. Ты, вероятно, знаешь, что к северу от ракетодрома идет строительство грандиозного подземного комбината по переработке урана и трансуранидов. Люди работают в шесть смен. Роботы — круглые сутки; замечательные машины, последнее слово практической кибернетики. Но, как говорят японцы, обезьяна тоже падает с дерева. Сейчас ко мне пришел Щербаков, злой, как черт, и сообщил, что банда этих механических идиотов (его собственные слова) сегодня ночью растащила один из крупных складов руды, приняв его, очевидно, за необычайно богатое месторождение. Программы у роботов были разные, поэтому к утру часть склада оказалась в пакгаузах ракетодрома, часть — у входа в геологическое управление, а часть вообще неизвестно где. Поиски продолжаются.

Но никто из известных авторов не догадался, что робот в освоении космоса имеет массу преимуществ перед человеком:

  • В отличие от человека, робот нуждается только в электропитании и обеспечении теплового баланса. Не надо тащить с собой десятки тонн оранжерей, еды, воды, кислорода, одежды и средств гигиены, лекарств и прочего.

  • Робота можно отправить в одну сторону, без возвращения.

  • Робот способен работать годами. Опыт "Вояджеров", марсоходов или "Кассини" говорит о том, что сейчас правильнее говорить уже не о годах, а десятилетиях.

  • Робот способен работать годами в условиях, которые смертельны для человека. Зонд "Галилео" получил дозу в 25 раз превышающую смертельную для человека и после этого работал на орбите 8 лет.


В результате получилось так, что только роботы массой в несколько тонн вписались в технические возможности человечества отправить их к другим планетам за приемлемые деньги и стали единственным на сегодня способом удовлетворения научного любопытства и получения красивых фотографий.

Мы живем в логистической кривой


Вторая ошибка фантастов состояла в том, что они прогнозировали линейное или даже экспоненциальное развитие космонавтики. Хотя ещё в 1838 году было открыто такое явление как логистическая кривая. Что это за страшный зверь? Для примера возьмем историю авиации:

  • 1900-е. Первые неуклюжие этажерки, первые рекорды - полеты на несколько километров с одним пассажиром.

  • 1910-е. Первые разведчики, истребители, бомбардировщики, почтовые и пассажирские самолёты.

  • 1920-1930-е. Освоение полётов ночью, первые трансконтинентальные перелеты.

  • 1940-е. Авиация - серьезная военная и транспортная сила.

  • 1950-е. Реактивные двигатели дают новый толчок развитию авиации - новые скорости, дальности и высоты, ещё больше пассажиров.

  • 1960-70е. Первые сверхзвуковые и широкофюзеляжные пассажирские самолёты, авиация качественно более доступна.

  • 1980-90е. Торможение. Разработка все дороже, фирмы-разработчики объединяются в гигантские компании. А самолёты все больше похожи друг на друга.

  • 2000-е. Предел. Два гиганта "Боинг" и "Эйрбас" делают внешне одинаковые машины, сверхзвуковые пассажирские самолёты вообще вымерли.


Если перевести эти достижения в числа, получится вот такая вот картинка:
02

В космонавтике ситуация совершенно такая же:
03

Для наглядности на график S-кривой можно наложить график расходов на достижение этого уровня:
04

И печаль нашего "сегодня" состоит в том, что в космонавтике на существующих технологиях мы близки к уровню насыщения. Технически можно слетать в пилотируемом варианте на Луну и даже Марс, но как-то денег жалко.

Клади КЦ - получишь гравицапу


Следующий печальный аспект, тормозящий рывок в космос - пока не обнаружено что-то очень ценное, ради чего стоит тратить деньги на освоение космоса дальше земной орбиты. Обратите внимание, что на околоземной орбите сейчас находится масса коммерческих спутников - связи, ТВ и Интернета, метеорологических, картографических. И у всех у них есть осязаемая, выраженная в деньгах польза. А какая польза от пилотируемой программы полётов на Луну? Вот официальный список результатов лунной программы США стоимостью примерно $170 миллиардов (в ценах 2005 года):

  • Луна - не первичный объект, это планета земной группы, со своей эволюцией и внутренним строением, аналогичным Земле.

  • Луна древняя и хранит историю первых миллиардов лет эволюции планет земной группы.

  • Самые молодые лунные скалы примерно такого же возраста, как самые древние земные. Следы самых ранних процессов и событий, которые, возможно, влияли на Луну и Землю, могут быть найдены сейчас только на Луне.

  • Луна и Земля генетически связаны и сформированы из различных пропорций общего набора материалов.

  • Луна безжизненна и не содержит живых организмов или органических веществ местного происхождения.

  • Лунные скалы произошли от высокотемпературных процессов без участия воды. Они делятся на три типа: базальты, анортозиты и брекчии.

  • Очень давно Луна была расплавлена на огромную глубину и сформировала океан магмы. Лунные горы содержат остатки ранних скал низкой плотности, которые плавали на поверхности этого океана.

  • Океан магмы был сформирован серией ударов огромных астероидов, которые сформировали бассейны, заполненные потоками лавы.

  • Луна несколько асимметрична, возможно, из-за влияния Земли.

  • Поверхность Луны покрыта кусками скал и пылью. Это называется лунным реголитом и содержит уникальную радиационную историю Солнца, что важно для понимания изменения климата на Земле.


Это всё очень интересно (никаких шуток), но все эти знания обладают непоправимым недостатком - их нельзя намазать на хлеб, залить в бензобак или построить из них дом. Если бы на просторах космоса был бы обнаружен некий "элериум", "тибериум" или иной шишдостаниум, который можно было бы использовать как:

  • Экономически выгодный источник энергии.

  • Составной элемент производства чего-нибудь ценного и нужного.

  • Еду/лекарство/витамин принципиально нового качества.

  • Предмет роскоши или источник удовольствия.


Если бы он также рос только на Марсе или в поясе астероидов (и не воспроизводился на Земле) и мог быть добыт только человеком (чтобы хитрое человечество не отправило более дешевых и неприхотливых роботов), то тогда бы именно пилотируемое освоение космоса получило бы бесценный стимул. А в отсутствие него в пессимистическом сценарии в 2020-х годах человечество может лишиться постоянного присутствия даже на околоземной орбите - на фоне побитых политиками горшков международного сотрудничества налогоплательщики могут спросить: "А зачем нам новая станция после МКС?"

Проклятие формулы Циолковского


Вот она, Немезида космонавтики:
05
Здесь:

  • V - конечная скорость ракеты.

  • I - удельный импульс двигателя (сколько секунд двигатель на 1 килограмме топлива сможет создавать тягу 1 Ньютон)

  • M1 - начальная масса ракеты.

  • M2 - конечная масса ракеты.


V для случая полных баков будет запасом характеристической скорости, т.е., тем запасом скорости, которым мы можем разгоняться/тормозиться при необходимости. Это также называют запасом delta-V (дельта означает изменение, т.е. это запас изменения скорости).
В чем здесь проблема? Возьмем схему метро карту требуемых изменений скорости для Солнечной системы (большая картинка):
06

Представим теперь, что мы хотим слетать на Марс и обратно. Это составит:

  1. 9400 м/с - старт с Земли.

  2. 3210 м/с - уход с орбиты Земли.

  3. 1060 м/с - перехват Марса.

  4. 0 м/с - выход на низкую орбиту Марса (белый треугольник означает возможность торможения об атмосферу).

  5. 0 м/с - посадка на Марсе (тормозим об атмосферу).

  6. 3800 м/с - старт с Марса.

  7. 1440 м/с - разгон с орбиты Марса.

  8. 1060 м/с - перехват Земли.

  9. 0 м/с - выход на низкую орбиту Земли (тормозим об атмосферу).

  10. 0 м/с - посадка на Землю (тормозим об атмосферу).


В итоге получается красивая цифра 19970 м/с, которую мы округляем до 20 000 м/с. Пусть ракета у нас будет идеальная, и объем топлива никак не влияет на её массу (баки, трубопроводы ничего не весят). Попробуем рассчитать зависимость начальной массы ракеты от конечной массы и удельного импульса. Преобразуя формулу Циолковского, получим:
M1=eV/I*M2
Воспользуемся бесплатным математическим пакетом Scilab. Конечную массу возьмем в диапазоне 10-1000 тонн, удельный импульс будет меняться от 2000 м/с (химические двигатели на гидразине) до 200 000 м/с (теоретическая оценка максимального импульса ЭРД на сегодня). Сразу скажу, что для максимальной массы и минимального импульса будет очень большое значение (22 миллиона тонн), поэтому шкала отображения будет логарифмической.

[m2 I]=meshgrid(10:50:1000,2000:5000:200000);
m1=log(exp(20000*I.^-1).*m2);
surf(m2,I,m1)


07

Этот красивый график, по сути, наглядный приговор химическим двигателям. Это не новость - на химических двигателях, как это прекрасно показывает практика, можно нормально запускать небольшие зонды, но даже на Луну слетать с экипажем уже несколько затруднительно.
Облегчим себе условия. Во-первых, допустим, что мы стартуем уже с орбиты Земли, и вместо 20 км/с нам понадобится 10. Во-вторых, обрежем "хвост" неэффективных химических двигателей, поставив минимальным значением I 4400 м/с (УИ водородного двигателя Спейс шаттла RS-25):

[m2 I]=meshgrid(10:50:1000,4400:5000:200000);
m1=log(exp(10000*I.^-1).*m2);
surf(m2,I,m1)


Логарифмическая шкала:
08

Линейная шкала:
09

Откажемся совсем от химических двигателей. Ядерный двигатель NERVA имел УИ 9000 секунд. Пересчитаем:

[m2 I]=meshgrid(10:50:1000,9000:5000:200000);
m1=exp(10000*I.^-1).*m2;
surf(m2,I,m1)


Линейная шкала:
10

Почему я повторяю эти однообразные графики? Дело в том, что плоский участок, обозначенный как "повод для оптимизма" показывает, что, когда появятся двигатели с УИ больше 50000 м/с, в пределах Солнечной системы станет возможно более-менее сносно летать без кораблей стартовой массой в миллионы тонн. А ЭРД, которые есть уже сейчас, имеют УИ 25000-30000 м/с (например, СПД 2300).
Впрочем, необходимо понимать, что повод для оптимизма весьма сдержанный. Во-первых, эти тысячи тонн надо доставить на орбиту Земли (а это крайне непросто). Во-вторых, существующие ЭРД имеют небольшую тягу, и, чтобы разгоняться с подходящим ускорением, надо ставить многомегаваттные реакторы.

Построим ещё один интересный график. Пусть нам известна конечная масса - 1000 тонн. Построим зависимость начальной массы от удельного импульса и конечной скорости:

[V I]=meshgrid(10000:2000:100000,50000:5000:200000);
m1=exp(V.*(I.^-1))*1000;
surf(V,I,m1)


11

Этот график интересен тем, что это в каком-то смысле взгляд в более далекое будущее человечества. Если мы захотим комфортного и быстрого перелета по Солнечной системе, то придётся выйти ещё на порядок выше в освоении удельного импульса - понадобятся двигатели с УИ в несколько сотен тысяч метров в секунду.

Здесь рыбы нет


Человечество отличается хитростью и изобретательностью. Поэтому множество идей было придумано для того, чтобы облегчить доступ в космос. Один из важнейших параметров, характеризующих тот барьер, который мы хотим перепрыгнуть - это цена выведения килограмма на орбиту. Сейчас, по различным оценкам (из Вики этот столбец убрали, вот, например, другой источник) для различных ракет-носителей, эта цена находится в диапазоне $4000-$13000 за килограмм на низкую околоземную орбиту. Что пытались придумать для того, чтобы проще, легче и дешевле выбраться хотя бы на околоземную орбиту?

  • Многоразовые системы. Исторически эта идея уже успела один раз провалиться в программе "Спейс шаттл". Сейчас этим занимается Элон Маск, планирующий сажать первую ступень. Хочется пожелать ему всяческих успехов, но на основании прошлого провала не думаю, что это будет качественный прорыв. В лучшем случае, стоимость упадет на несколько процентов.

  • Single Stage to Orbit. Не вышла за пределы проектов, несмотря на неоднократные попытки.

  • Воздушный старт. Есть успешный проект для небольшой полезной нагрузки, но не масштабируется под тяжелые грузы.

  • Безракетный космический запуск. Придумано очень много проектов, но все они имеют фатальный недостаток - требуются астрономические инвестиции, которые никак нельзя "отбить" без полного завершения проекта. Пока космический лифт, фонтан или масс-драйвер не будет полностью построен и запущен, прибыли от него никакой.



Чем сердце успокоится


Чем можно поднять настроение после этих печальных размышлений? У меня есть два аргумента - один абстрактный и фундаментальный, другой более конкретный.
Во-первых, прогресс в целом - это не одна S-кривая, а множество их, что образует вот такую вот оптимистичную картинку:

12

В истории авиации можно выделить, например:
13

И, наверняка, мы с вами стоим в похожей точке развития космонавтики. Да, сейчас наблюдается некоторый застой, и даже возможен откат назад, но человечество головами лучших своих представителей пробивает стену познания, и где-то, ещё не замеченные, пробиваются ростки нового будущего.

Второй аргумент - это идущие без особого ажиотажа новости о разработке атомного реактора для транспортно-энергетического модуля:
14

Последние по времени новости по этому проекту были летом - собрали первый ТВЭЛ. Работы, пусть и без регулярной огласки, очевидно, ведутся дальше, и можно надеяться на появление в ближайшие годы принципиально нового аппарата - ядерного буксира с ЭРД.

Постскриптум


Это несколько непричесанные мысли, назовём их первой итерацией. Хочется получить обратную связь - может, я что упустил или неверно определил значимость явления. Кто знает, может, после обработки фидбека получится более стройная концепция или придумается что-нибудь интересное?

КДПВ отсюда. Иллюстрации S-кривых из старого ЖЖ Алексея Анпилогова.

Интересно? Подписывайтесь на обновления.
Tags: мысли о будущем космонавтики
Subscribe
promo lozga november 4, 2014 17:00
Buy for 50 tokens
Привет! Добро пожаловать в блог, посвященный популяризации космонавтики, астрономии, и, шире, науки и прогресса человечества. Если вы зашли ко мне впервые, рекомендую почитать длинные серии постов по тегам: Серия "Незаметные сложности космической техники". Рассказы о том, как и почему ракеты и…
  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your IP address will be recorded 

  • 61 comments